Saturday 25 February 2017

Moving Average Filter Design Matlab

Frequenzgang des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, die Impulsantwort eines L-Sample-gleitenden Mittelwerts Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe We Kann die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen werden nur um einen Faktor von etwa 110 (für den 16-Punkte-gleitenden Durchschnitt) oder 13 (für den vier-Punkte-gleitenden Durchschnitt) gedämpft. Wir können viel besser als das. (1-exp (-iomega)) H8 (18) (1-exp (- & omega; & sub4; (1-exp (-iomega)) (1-exp (-iomega)) (1-exp (& ndash; H16)) Achse (0, pi, 0, 1) Copyright - 2000 - Universität von Kalifornien, BerkeleyMoving Durchschnittlicher Filter (MA Filter) Loading. Der gleitende Mittelwertfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetastetem Datensignal verwendet wird. Es nimmt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastwerte und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Das MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Mittelwert dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungsberechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, daß der 3-Punkt-Moving-Average-Filter nicht viel getan hat, um das Rauschen herauszufiltern. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende Durchschnittsfilter kein Frequenzband von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, der gleitende Durchschnitt ist ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpaßfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre SidebarFrequenzantwort des Moving Average Filters Und FIR Filter Vergleichen Sie den Frequenzgang des gleitenden Durchschnittsfilters mit dem des regulären FIR-Filters. Stellen Sie die Koeffizienten des regulären FIR-Filters als Folge von skalierten 1s ein. Der Skalierungsfaktor ist 1filterLength. Erstellen Sie ein dsp. FIRFilter-Systemobjekt und legen Sie seine Koeffizienten auf 140 fest. Um den gleitenden Durchschnitt zu berechnen, erstellen Sie ein dsp. MovingAverage-Systemobjekt mit einem gleitenden Fenster mit der Länge 40, um den gleitenden Durchschnitt zu berechnen. Beide Filter haben die gleichen Koeffizienten. Der Eingang ist Gaußsches weißes Rauschen mit einem Mittelwert von 0 und einer Standardabweichung von 1. Stellen Sie den Frequenzgang beider Filter mithilfe von fvtool dar. Die Frequenzantworten entsprechen genau, was beweist, dass das gleitende Mittelfilter ein Spezialfall des FIR-Filters ist. Zum Vergleich den Frequenzgang des Filters ohne Rauschen. Vergleichen Sie den Frequenzgang des Filters mit dem des idealen Filters. Sie können sehen, dass der Hauptlappen im Durchlassbereich nicht flach ist und die Wellen im Stopband nicht eingeschränkt sind. Der Frequenzgang des gleitenden Durchschnittsfilters stimmt nicht mit dem Frequenzgang des idealen Filters überein. Um ein ideales FIR-Filter zu realisieren, ändern Sie die Filterkoeffizienten zu einem Vektor, der keine Folge von skalierten 1s ist. Der Frequenzgang des Filters ändert sich und neigt dazu, sich näher an die ideale Filterantwort zu verschieben. Entwerfen Sie die Filterkoeffizienten anhand vordefinierter Filterspezifikationen. Beispielsweise ein FIR-Filter mit einer normierten Grenzfrequenz von 0,1, eine Durchlaßbandwelligkeit von 0,5 und eine Stoppbanddämpfung von 40 dB. Verwenden Sie fdesign. lowpass, um die Filterspezifikationen und die Designmethode zu definieren, um den Filter zu entwerfen. Die Antwort des Filters im Durchlaßbereich ist nahezu flach (ähnlich der idealen Reaktion), und das Stoppband hat Gleichstromgrenzen eingeschränkt. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Bitte lesen Sie mathworkstrademarks für eine Liste anderer Marken, die Eigentum von The MathWorks, Inc. sind. Andere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Wähle dein Land


No comments:

Post a Comment